cating that no 2,2'-DTDP, res containing isotopic zinc nCl2 · (2,2'-DTDP) Assignments Ligand and ligand induced ν Zn—Clasym + ligand ν Zn—Cl_{sym} Ligand vZn—N Ligand, δZn —Cl and lattice vibrations Br₂ · (2,2'-DTDP) Assignments Ligand and ligand vZnBr_{asym} vZn—N vZn—Br_{sym} Ligand and lattice vw), 487(s, sp), 438(w),), 115(vvw), 100(vvw), Fig. 1. Infrared spectra in the region $350-150 \, \mathrm{cm^{-1}}$ for the isotopic $\mathrm{ZnCl_2} \cdot (2,2'\text{-DTDP})$ and $\mathrm{ZnBr_2} \cdot (2,2'\text{-DTDP})$ complexes. For the ZnCl₂·(2,2'-DTDP) complex it may be observed that the absorption at 293 cm⁻¹ is metal-sensitive and halogen-sensitive (disappears in ZnBr₀·(2,2'-DTDP)). Therefore, the absorption must be associated with a zinc-chlorine stretching mode. Its frequency position is normal for a terminal zine-chlorine stretching mode associated with a tetrahedral environment for the zinc atom [28-35]. The selection rules predict a symmetrical and an asymmetric vibration in molecules of this type. A second zinc-chlorine stretching vibration in complexes of this stereochemistry has been assigned in related complexes in the region of 310-330 cm⁻¹. A band was observed at 320 cm⁻¹ in both the chloride and bromide complexes, and was found to be only slightly metal-sensitive. A ligand band was observed at 345 cm⁻¹, and thus the band at 320 cm⁻¹ may involve both a ligand mode and the other zinc-chlorine stretching mode. The absorption at 222 cm⁻¹ is metal-sensitive and halogeninsensitive. Thus, this band must involve the zinc-nitrogen stretching mode. Pressure sensitivities allow us to determine the nature of the two zinc-chlorine stretching modes. Under pressure, the absorption at 293 cm⁻¹ shows a significant decrease in peak intensity relative to the band at 320 cm⁻¹. From previous high-pressure studies we have determined that the symmetrical metal-halogen stretching vibration is more ^[28] R. J. H. CLARK and C. J. WILLIAMS, Inorg. Chem. 4, 350 (1965). ^[29] R. J. H. CLARK, Spectrochim. Acta 21, 955 (1965). ^[30] G. B. Deacon, J. H. S. Green and F. B. Taylor, Australian J. Chem. 20, 2069 (1967). ^[31] G. E. COATES and D. RIDLEY, J. Chem. Soc. 166 (1964). ^[32] J. BRADBURY, K. P. FOREST, R. H. NUTTALL and D. W. A. SHARP, Spectrochim. Acta 23A, 2701 (1967). ^[33] C. Postmus, J. R. Ferraro and W. Wozniak, Inorg. Chem. 6, 2030 (1967). ^[34] C. W. Frank and L. B. Rogers, Inorg. Chem. 5, 615 (1966). ^[35] J. R. FERRARO, W. WOZNIAK and G. ROCH, Ric. Sci. 38, 433 (1968).